Design and Evaluation of a Reliable Transport
Protocol for Underwater Networks

Enrico Disaro’f, Vincenzo Cimino', Filippo Campagnarof

Abstract—Reliable data communication in underwater net-
works is crucial for a wide range of applications: transmis-
sion of multimedia content such as images for environmental
monitoring, underwater exploration and surveillance. However,
the harsh characteristics of the underwater acoustic channel
(high latency, limited bandwidth, and high bit error rate)
pose significant challenges to achieving reliable end-to-end data
delivery, especially in multi-hop networks.

The goal of this work is to design, implement and evaluate
via simulations a transport layer protocol within the DESERT
underwater network simulator [1]. The protocol needs to ensure
in-order delivery of messages to the application layer and
incorporate an end-to-end Automatic Repeat reQuest (ARQ)
mechanism to handle packet loss and ensure data reliability.

Index Terms—Underwater Acoustic Networks, Transport Pro-
tocol, DESERT Underwater.

I. INTRODUCTION

Some applications of underwater networks are observation
and control of marine life, environment, infrastructures, and
many others [2]. However, underwater communication is an
entire different world from terrestrial communications: con-
ventional radio-frequency communication is unviable due to
the high absorption property of the water medium. The main
alternatives found until now are acoustic, visible light (VLC),
and magnetic induction (MI) based communication [2], but
they all present different challenges and tradeoffs in terms of
reliability, distance and speed.

In this work, we focus on acoustic communication, which
works on a relatively long distance compared to the alter-
natives, but suffers from a low bitrate and a non-negligible
latency due to the propagation speed of sound of just 1500 m/s
in the water. The communication is possible but not always
successful, because of effects like Doppler and multi-path
fading; this calls for a transport protocol that can ensure
reliability, but it is not possible to simply use TCP because
the latency makes handshakes and connections between nodes
very hard, and the low bitrate means that headers need to
be as small as possible for the throughput to be unaffected.
Finally, the devices used for underwater communication are
not necessarily very powerful, and they can introduce further
constraints.

The goal of this work is to build a transport layer protocol
that offers reliability and can be adapted to different scenarios,
despite the limitations of the devices and the channel. Using
the DESERT framework, the protocol will be tested through

TDepartment of Information Engineering,
email: enrico.disaro.1 @studenti.unipd.it,
campagnl @dei.unipd.it

University of Padova,
vincenzo.cimino @unipd.it,

a series of simulations set under slightly different conditions,
and its performance will be evaluated in terms of throughput,
packet delivery ratio and delay.

The rest of this work is structured as follows: Sec. II and
IIT describe, respectively, the scenario of the simulations and
the common protocol stack that has been employed. Sec. IV
lists the settings and the goal of each simulation and Sec. V
shows the results; Sec. VI concludes the paper.

II. SCENARIO

The protocol is tested on a small underwater network
composed of 3 nodes, placed as shown in Fig. 1 1000 m deep.
Each node communicates directly with the other two through
an acoustic channel, subject to noise and interference. Traffic
is generated at a constant average rate for 3600 s (1 hour)
between each pair of nodes.

100 m
141 m

A 4

Node 0

100 m

Fig. 1: Placement of the nodes.

The performance of the system is evaluated under slightly
different conditions of the nodes, in order to show how the
protocol can be tweaked to work better in each situation.

III. PROTOCOL STACK DESCRIPTION

The simulations are performed with the DESERT underwa-
ter network simulator, where each node is equipped with the
protocol stack shown in Fig. 2. In the following, we provide
a brief description of each protocol:

e UW/CBR is an application layer protocol that generates
traffic with a constant bitrate. It generates packets of
a fixed size according to a Poisson random variable
with averages equal to the average generation time.

UW/CBR UW/CBR

UW/TP or UW/UDP

UW/STATICROUTING

Uw/Ip

UW/MLL

UW/CSMA_ALOHA

UW/PHYSICAL

Fig. 2: Protocol stack of the nodes.

Only in-order packets are accepted, and there are no
retransmissions.

e UW/TP is a connection-oriented transport layer protocol

that offers reliability to the application layer by introduc-
ing retransmissions. It uses ACKs and NACKs to control
the communication; one of its goals is to reduce overhead
as much as possible, so ACKs are cumulative and the
reception of a NACK is treated as an ACK for all packets
preceding the NACKed one.
There are three main parameters that define the behavior
of the protocol and make it capable of adapting to
various situations: the retransmission time of NACKSs
(NACK _retx_time), the maximum number of retransmis-
sions of a NACK (NACK_max_retx), and the number
of consecutive packets that must be received correctly
before sending an ACK (cum_ACK_param).

e UW/UDP is a best-effort and connection-less transport
layer with no retransmission capabilities.

e UW/IP and UW/STATICROUTING are used to assign
addresses to the nodes and setup static routes between
them; UW/MLL maps MAC addresses to IP addresses.

e UW/CSMA_ALOHA is a contention based MAC protocol,
with retransmissions and reordering.

e UW/PHYSICAL simulates transmission using the Urick-
Thorp formula (empirical equation that estimates the
absorption of sound in seawater).

IV. SIMULATION SETTINGS

For each simulation there are three devices equipped with
a medium frequency acoustic modem. The channel used to
communicate is under average conditions, with interference
caused by wind, shipping activity, and concurrent transmis-
sions. The power used for transmission is such that the nodes
can easily reach each other, but interference is relevant. The
simulation parameters are summarized in Table 1.

Four different simulation settings are conducted to show
some strengths and weaknesses of the protocol; they differ in
buffer sizes, generated traffic, and UW/TP parameters.

e Scenario 1: The goal is to study the behavior of the
protocol in case of unlimited resources; for this reason,
the buffer size and NACK_max_retx are set to values

sufficiently large so that they do not constrain the system.
Simulations are performed with each node generating
traffic between 100 and 1000 bps, using both UW/TP
and UW/UDP.

e Scenario 2: The goal is to study how the
NACK_max_retx parameter affects the transmission
in real conditions. Several simulations are performed
varying this parameter between 1 and 100.

e Scenario 3: The goal is to study how, once the max
number of retransmission is fixed, the NACK_retx_time
parameter influences the performance of the system. Test
values range from 1 to 100 s.

o Scenario 4: The goal is to understand the effect of the
cum_ACK_param parameter on the communication. Val-
ues between 1 and 100 are used in different simulations.

TABLE 1: Underwater network settings

Parameter | Value |
Wind speed 14 m/s
Acoustic modem frequency 25 kHz
Acoustic modem bandwidth 5 kHz
TX acoustic power 150 re 1uPa
Bitrate 4800 bps
Packet size 1000 bit

V. RESULTS

To assess the system performance, we perform 100 runs for
each scenario. The metrics used for evaluation are:

o Application layer packet delivery ratio (PDR): the per-
centage of successfully delivered packets over to the total
number of packets sent by the application layer.

e Delay: the time it takes to UW/TP to empty the send
buffer after receiving the last packet from the application
layer. For UW/UDP it is always considered O because it
does not employ buffers and retransmissions.

e Average troughput: throughput is the ratio between the
number of bits received by an application and the time
required for their transmission. We consider the average
throughput of all applications.

The first scenario employs infinite buffers and infinite
retransmissions, allowing the protocol to always reach a PDR
of 100 % at the cost of some delay. We also try to use
UW/UDP for comparison. Figures 3a and 3b show that for
low traffic UW/TP can easily reach a higher throughput than
UW/UDP with no delay, because the extra traffic generated
by the protocol, like NACKs and retransmission, does not
exceed the channel capacity and manages to use the available
bitrate more efficiently. However, when the generated traffic
exceeds a certain threshold (in these settings around 225 bps),
the control traffic increases enough to become relevant; this
causes the application layer throughput to drop, and the delay
to increase. After this point UW/UDP has a better throughput
due to its smaller overhead, but this occurs at the cost of

a rapidly decreasing PDR (see Fig. 3c). In contrast, UW/TP
suffers from an increasingly larger delay and lower throughput
to guarantee a perfect PDR.

2504 3 uw/TP i &=
== UW/UDP i - = % é L &
i
225 A | _I_
2 200 B
£ 200 %! | .}%
= !
2 1751 | '% ES
g T T F eza=
2 150 A
£ £ F
125 o i
.%; = :
100 1 &= !
* 1
———— T
100 110 120 140 170 200 250 300 400 500 600 700 800 900 1000
Generated Traffic [bps]
(a) Throughput comparison.
15000 i
n 1
= 10000 4 ! UW/UDP
b ! UwW/TP
] !
5000 - -
04 :
—— 77—
100 110 120 140 170 200 250 300 400 500 600 700 800 9001000
Generated Traffic [bps]
(b) Delay comparison.
100] !
i
—. 80 !
£ | UW/UDP
= ' UW/TP
& i
60 !
= :
i
40 !

T T T T T T T T T T T T T T T
100 110 120 140 170 200 250 300 400 500 600 700 800 900 1000
Generated Traffic [bps]

(c) PDR comparison.

Fig. 3: Scenario 1 results.

For bitrates greater than 225 bps we notice that some delay
starts appearing, meaning that such rate is greater than what
the dynamics of the protocol can bear. The next simulations
are performed using two different rates of traffic generation,
to study the behavior of the protocol below (200 bps, we call
it “normal’ load) and above (250 bps, we call it "high’ load)
the 225 bps threshold.

The second scenario examines the effect of the number of
retransmissions on the performance of the protocol. Figure 4
and 5 show the results for normal and high load. In case
of unlimited buffers, the PDR is increasing in the number of
retransmissions, and also is the delay, even if with very low
values. However, in case of limited buffers (with a capacity
of 100 packets), the performance gets notably worse in the
high load case, both in terms of PDR (Fig. 4b) and delay
(Fig. 5b). This happens because the buffer eventually fills

up, and packets need to be discarded; the receiver does not
know this, so it keeps asking for their retransmission until the
maximum number of NACK transmissions is reached. This
slow dynamic of the receiver Performance is degraded so
much that it is only slightly better than UW/UDP. However,
for normal load, a reduced buffer size does not seem to
particularly affect performance, except for some outlier cases
(Fig. 4a).

Notably, in both cases a number of retransmissions that is
too small (like 1 or 2) causes a low PDR independently from
the buffer size.

100 +

95

%%‘f

01 TP

85

-/ %

75

PDR [%]

70 1

65 4 Buf size 100000
Buf size 100

60 T T T T T T T T T
1 2 3 4 5 6 8 10 15

NACK_max_retx

20 30 40 50 100

(a) Comparison for different buffer sizes in the normal load case.

100 . = = = - = = =
95

90
=
85 4

%Hmmm;

PDR [%]

75 1

?Di%+

65 Buf size 100000
B Buf size 100

60 T T T T T T T T T
1 2 3 4 5 6 8 10 15

NACK_max_retx

T T T T T
20 30 40 50 100

(b) Comparsion for different buffer sizes in the high load case.
. Ju S S5

Fig. 4: Scenario 2 results for PDR.

The last simulation showed that values between 6 and
8 produce very good results, so for the third scenario we
fix NACK_max_retx to 7, and observe the impact of the
time between retransmissions on the PDR. The value of
NACK _retx_time does not seem to have a great effect in the
high load case, as the plateau in Fig. 6a demonstrates, but
instead it’s really important in the normal load scenario. We
can see in Fig. 6b that retransmission times between 4 and 8
seconds allow for an almost perfect PDR with a low delay, but
values greater than 8 cause a worse PDR and a higher delay,
because the slow retransmission causes the buffer to fill up and

10000 4 Buf size 100000
Buf size 100

o 7500 A
>
[
T 5000
a

2500

o] T T T T T T T T

T 7 T T u T
1 2 3 4 5 6 8 10 15 20 30 40 50 100

NACK_max_retx

(a) Comparison for different buffer sizes in the normal load case.

Buf size 100000
10000 —u— Buf size 100
w7500
B
T 5000 -
[a]
2500
O -

T
1 2 3 4 5 6 8 10 15
NACK_max_retx

———————
20 30 40 50 100
(b) Comparison for different buffer sizes in the high load case.

Fig. 5: Scenario 2 results for delay.

packets gets discarded. In both cases very low values seem to
have a very negative impact on the performance.

IR RN F
é%%%%%%%%

70 4

100 A

74
5 &

PDR [%]

% 250bps
T

o] 2B

200bps
T T T T T T T T T T T T
2 3 4 5 5] 8 10 15 20 30 40 50 100
NACK_retx_time [s]
(a) Results for PDR.
250bps
6000 1 200bps
)
. 4000 4
o
8
2000
0_
T T T T T T T T T T T T T T
1 2 3 4 5 6 8 10 15 20 30 40 50 100

NACK_retx_time [s]
(b) Results for delay.

Fig. 6: Scenario 3 results. Comparison for different traffic
generation rates: 200 bps and 250 bps.

The last scenario aims to understand if the frequency of
cumulative ACKs impacts the performance of the protocol.
However, as we can see from Figs. 7a and 7b, the parameter

cum_ACK_param does not appear to have any strong effect
on the communication, except when it has very low values;
in these cases the performance gets worse, likely because we
are flooding the network with not so useful packets.

100 = 3 F O+ F F T F F T F F T
95 |
907 250bps
& 200bps
a 1 [
85 4
80-%]
1 2 3 4 5 6 8 10 15 20 30 40 50 100
cum_ACK_param
(a) Results for PDR.
800 -
__ 600
o
- 250bps
2 4007 200bps
o
200
O_ T T T T T T T T T T T T T T
1 2 3 4 5 6 8 10 15 20 30 40 50 100

cum_ACK_param

(b) Results for delay.

Fig. 7: Scenario 4. Comparison for different traffic generation
rates: 200 bps and 250 bps.

VI. CONCLUSIONS AND FUTURE WORK

In this work we analyzed the performance of a reliable
transport layer protocol for underwater communication, with
some soft parameters that can be modified by the user.
The choice for the parameters is ruled by the PDR-delay
tradeoff, and the flexibility of the protocol allows to adjust
its performance based on the situation and preferences. The
protocol behaves in two different ways depending on the
generated traffic: if it is below a certain threshold, the protocol
can achieve high PDR and low delay, even in case of limited
buffers; in contrast, traffic above such threshold can only
be withstood for limited periods, depending on the available
buffer size. This makes the protocol resistant to bursts in the
traffic, but it cannot be used in the long run for such higher
rates. Moreover, the design makes ACKs not so relevant, but
they are still needed to end the communication and to signal
that the communication is alive in case of good channels that
don’t cause the transmission of many NACKs.

Future works can see an evolution of the protocol can
autonomously probe the channel and adapt its parameters
in case of time-varying channel. Moreover, under its actual
conditions, the protocol does not implement a handshake

system but needs a manual setup of both devices by an
operator, which can be easy in the context of a simulator,
but inconvenient in a real setting.

REFERENCES

[1] SIGNET Group, “DESERT underwater,” 2023. [Online]. Available:
https://github.com/signetlabdei/desert_underwater.git, [Accessed: May 9,
2025].

[2] A. Pal, F. Campagnaro, K. Ashraf, R. Rahman, A. Ashok, and H. Guo,
“Communication for underwater sensor networks: A comprehensive
summary,” ACM Transactions on Sensor Networks, vol. 19, 07 2022.

https://github.com/signetlabdei/desert_underwater.git

	Introduction
	Scenario
	Protocol stack description
	Simulation Settings
	Results
	Conclusions and future work
	References

